V-Soft's Corporate Headquarters

101 Bullitt Lane, Suite #205
Louisville, KY 40222

TOLL FREE: 844.425.8425
FAX: 502.412.5869

Denver, Colorado

6400 South Fiddlers Green Circle Suite #1150
Greenwood Village, CO 80111

TOLL FREE: 844.425.8425

Chicago, Illinois

311 South Wacker Dr. Suite #1710, Chicago, IL 60606

TOLL FREE: 844.425.8425

Madison, Wisconsin

8401 Greenway Boulevard Suite #100
Middleton, WI 53562

TOLL FREE: 844.425.8425

Atlanta, Georgia

1255 Peachtree Parkway Suite #4201
Cumming, GA 30041

TOLL FREE: 844.425.8425

Cincinnati, Ohio

Spectrum Office Tower 11260
Chester Road Suite 350
Cincinnati, OH 45246

Phone: 513.771.0050

Raritan, New Jersey

216 Route 206 Suite 22 Hillsborough Raritan, NJ 08844

Phone: 513.771.0050

Toronto, Canada

1 St. Clair Ave W Suite #902, Toronto, Ontario, M4V 1K6

Phone: 416.663.0900

Hyderabad, India

Incor 9, 3rd Floor, Kavuri Hills
Madhapur, Hyderabad – 500033 India

PHONE: 040-48482789

Bangalore, India

3rd Stage Behind Hotel Leela Palace
Kodihalli, Bangalore - 560008 India

How to Design Conversation Engines for Chatbots

User comunicating with Enterprise chatbot

With enterprises realizing the true potential of conversational commerce, adding a chatbot for your business is no longer an option. A conversation engine enables chatbots  to ensure a better experience to users with more contextual and personalized conversations. Let’s explore in detail, the role of the conversation engine in chatbots and design aspects involved in building a conversation engine.

Conversation Engine in Chatbot Development

Conversational AI-first will supersede cloud-first and mobile-first as the most important, high-level imperative for the next 10 years.”

-Gartner Report

In the era of experiences-as-a-economy, user experiences matter the most and enterprises are channeling all their efforts (financial and technological) to this process to ensure a superior experience for their users. Here, Chatbots play a dominant role for enterprises to ensure superior interactive experiences in the information retrieval journey of users. Conversational engines are what allow chatbots to understand what the user is looking for. Integrating AI algorithms to conversation engines makes chatbots well informed about users and serve them with more personalization.

Conversation engine involves designing a chatbot to be context-aware in its conversations. It’s this context awareness feature that differentiates chatbots from an IVR (Interactive Voice Response) system. If you are talking to an IVR system you can’t just converse freely, you must follow a set of instructions because it's not dynamic. To answer specific questions of users, the chatbot must be dynamic, context-aware and intelligent. This is where the conversation engine plays an important role. This feature is what enables the chatbot to simulate human-like conversation.

Though chatbots are capable enough to share human work, we can’t completely replace a human agent with a chatbot, as there are limits to what a chatbot can do in a conversation. Also, they can’t maintain full-fledged conversations without human assistance. As of now, chatbots can’t replace humans but they can certainly amplify productivity.

Designing a Conversation Engine

Train an intelligent agent by placing it directly into real interactions. Given a conversation, the agent analyzes how the conversation flow has happened between the human agent/chatbot and the end user. It studies how the user has replied: If the user was satisfied the reply would be “thank you” or something like “that has helped,” thus it records these as positive signals. If the user is not satisfied, the user would probably ask more questions or send negative signals. It grasps these signals and learns from the interaction points.

The conversation engine enables the chatbot to identify from its user preferences, problem areas and in what different situations the user would be happy, sad, or angry. It tries to identify behavior patterns and learn from the interactions. It analyzes not from one person, it learns from different people, diverse interactions, and situations.

Based on this analysis, policies are framed. These policies will be used to decide what to do in a given situation based on history (e.g.: How customers would be satisfied). The goal is customer satisfaction, for that it collects as many customer experiences as possible and further reframes policies to ensure better customer satisfaction. This process is called reinforcement learning. It can take deep reinforcement learning to develop more accurate policies. After running these tasks repetitively, and going through intensive testing, the chatbot will be ready to deploy.

"Reinforcement learning (RL) is defined as the process of learning by interacting with an environment. An RL agent learns from the consequences of its actions, rather than from being explicitly taught and it selects its actions on the basis of its past experiences (exploitation) and also by new choices (exploration), which is essentially trial and error learning."


Here, Natural language Processing (NLP) is what empowers the conversation engine to decode the user’s message by mining out the analytics of the user’s intent and sentiment. The Machine Learning and AI algorithms help the chatbot to study the past user interactions and behavioral pattern. Based on this, the user’s conversations are tailor-made and able to connect with the user’s emotional quotient.

Chatbot Consultation

Topics: Chatbots, Natural Language Processing, Conversation Engine, Reinforcement Learning

Get Weekly Updates

Chatbots for the Enterprise - Technical Guide